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Mass transfer through the flat shear-free surface of a turbulent open-channel flow is
investigated over a wide range of Schmidt number (1 � Sc � 200) by means of large-
eddy simulations using a dynamic subgrid-scale model. In contrast with situations
previously analysed using direct numerical simulation, the turbulent Reynolds number
Re is high enough for the near-surface turbulence to be fairly close to isotropy and
almost independent of the structure of the flow in the bottom region (the statistics
of the velocity field are identical to those described by I. Calmet & J. Magnaudet
J. Fluid Mech. vol. 474, 2003, p. 355). The main statistical features of the concentration
field are analysed in connection with the structure of the turbulent motion below the
free surface, characterized by a velocity macroscale u and an integral length scale L.
All near-surface statistical profiles are found to be Sc-independent when plotted vs.
the dimensionless coordinate Sc1/2yu/ν (y is the distance to the surface and ν is the
kinematic viscosity). Mean concentration profiles are observed to be linear throughout
an inner diffusive sublayer whose thickness is about one Batchelor microscale, i.e.
LSc−1/2Re−3/4. In contrast, the concentration fluctuations are found to reach their
maximum near the edge of the outer diffusive layer which scales as LSc−1/2Re−1/2.
Instantaneous views of the near-surface isovalues of the concentration and vertical
velocity are used to reveal the influence of the Schmidt number. In particular, it
is observed that at high Schmidt number, the tiny concentration fluctuations that
subsist in the diffusive sublayer just mirror the divergence of the two-component
surface velocity field. Co-spectra of concentration and vertical velocity fluctuations
indicate that the main contribution to the turbulent mass flux is provided by eddies
whose horizontal size is close to L, which strongly supports the view that the mass
transfer is governed by large-scale structures. The dimensionless mass transfer rate is
observed to be proportional to Sc−1/2 over the whole range of Schmidt number. Based
on a frequency analysis of the concentration equation and on the Sc−1/2Re−3/4scaling
of the diffusive sublayer, it is shown that the mass transfer rate at a given Sc is
proportional to 〈β2〉1/4, 〈β2〉 being the variance of the divergence of the surface
velocity field. This yields dimensionless mass transfer rates of the form αSc−1/2Re−1/4,
where the value of α is shown to result from both the kinematic blocking of the
vertical velocity and the viscous damping of the horizontal vorticity components
induced by the free surface.

1. Introduction
The transfer of weakly soluble gases through gas–liquid interfaces is of paramount

importance in geophysical and industrial processes. In particular, it is central in
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pollution and climate change problems since it governs the balance of carbon dioxide
(CO2) and other greenhouse gases between the atmosphere and the oceans or the
lakes. Similarly, falling films and bubbly flows are widely used as mass exchangers in
chemical reactors. The difficulty in the parameterization of the rate at which weakly
soluble gases penetrate into the liquid phase in such systems stems from the fact that
the resistance to the transfer is essentially concentrated within a very thin sublayer
of liquid where turbulence is reduced (because of the surface boundary condition
on the vertical velocity) and molecular diffusion becomes dominant. The thinness of
this diffusive layer (typically 10–102 µm for CO2) is a very severe obstacle to local
measurements of the concentration and velocity required to elucidate many aspects of
the transfer process. Therefore, for decades, only global measurements were performed
in several laboratory or field flow configurations. The corresponding data were then
used to develop models relating the mass transfer rate to the physical properties of
the liquid and dissolved gas and to some of the macroscopic characteristics of the
flow. This gave rise to two main families of mass transfer models.

The first of these is based on the concept of eddy diffusivity (Levich 1962; Davies
1972). Paralleling Prandtl’s ideas of eddy viscosity and mixing length, eddy diffusivity
models consider globally the effect of all turbulent scales and express the turbulent
mass flux at a certain distance from the surface as a function of the local momentum
flux. Integration through the concentration boundary layer then yields directly the
mass flux at the surface. The main conceptual limitation of these models is that
they make use of some sort of Reynolds analogy. Moreover, even in situations
where this analogy holds, as in wall-bounded shear flows, the determination of the
model coefficients is uncertain, especially in the transition region where the transfer
is controlled both by molecular diffusion and turbulence. The situation is worse at a
free surface, since the Reynolds analogy does not hold because the scalar flux and
the momentum flux evolve differently with the distance to the surface.

The second family of models is based on the concept of renewal eddies that
‘refresh’ the fluid elements at the gas–liquid interface. These models state that the
average velocity KL at which the gas dissolves into the liquid is controlled by its
molecular diffusivity D and by a so-called renewal time scale τ . From dimensional
evidence, Highbie (1935) and Danckwerts (1951) then obtained KL = (D/τ )1/2. The
key problem is then the prediction of the time scale τ . Two different viewpoints,
based on separate experimental data sets, emerged in the late 1960s. Fortescue &
Pearson (1967) studied the absorption of CO2 in an open-channel flow in which
turbulence was enhanced by a vertical grid placed near the entrance section. Their
results supported the view that mass transfer is controlled by large-scale eddies, i.e.
τ ∝ Λ/u0, where Λ is some measure of the turbulence macroscale and u0 characterizes
the magnitude of large-scale velocity fluctuations. In dimensionless form, this yields
KL/u0 ∝ Sc−1/2Re

−1/2
Λ , where ReΛ = Λu0/ν is the turbulent Reynolds number and

Sc= ν/D is the Schmidt number, ν denoting the kinematic viscosity of the liquid.
On the other hand, Banerjee, Rhodes & Scott (1968) and Lamont & Scott (1970)
performed CO2-absorption experiments in a falling film and in a bubbly pipe flow,
respectively. They found that their data correlated properly using the Kolmogorov
time scale (ν/ε)1/2 as the characteristic time scale τ (ε being the dissipation rate
per mass unit), which suggests that the absorption process is controlled by small-
scale eddies. Since the dissipation rate may be expressed in terms of large-scale
characteristics through Taylor’s relationship ε ∝ u3

0/Λ (Batchelor 1953, p. 103), this

yields in dimensionless form KL/u0 ∝ Sc−1/2Re
−1/4
Λ . Hence the two different scalings

yield conflicting exponents of the turbulent Reynolds number in the expression of
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KL/u0. This problem launched a long controversy as to which range of scales is the
most efficient in the high-Schmidt-number mass transfer mechanism. Data available
up to 1975 were critically re-examined by Theofanous, Houze & Brumfield (1976)
who suggested that there is a smooth transition between a low-ReΛ regime in which
the large-scale eddies control the transfer and a high-ReΛ regime where small-scale
eddies dominate, the transition between the two regimes taking place for ReΛ ≈ 500.

The next conceptual step was achieved with the recognition of the central role played
by the surface divergence of interfacial motions. In a comprehensive study, McCready,
Vassiliadou & Hanratty (1986) solved numerically a simplified two-dimensional form
of the concentration equation in which the normal velocity fluctuation was expanded
in the form β(t)y very close to the surface (assumed to lie in the plane y = 0),
the strain rate β(t) being taken from the time series of a near-wall experimental
signal. Their results indicated that KL/u0 depends linearly on 〈β2〉1/4, which is in line
with the surface renewal concept, provided the characteristic time is selected to be
τ ∝ 〈β2〉−1/2. Obviously, the renewal model based on the latter scaling is more general
than the ‘large-scale’ and ‘small-scale’ models discussed above, as 〈β2〉 results from
an integration over the whole spectrum of near-surface motions. In particular, this
model suggests that all frequencies of the near-surface flow contribute to the transfer
efficiency, in contrast with the near-wall situation where a similar approach proved
the mass transfer to be controlled by low-frequency events (Campbell & Hanratty
1983). Based on the conclusions of McCready et al. (1986) and on the idealized
inviscid description of the distortion of the bulk turbulence by a flat surface (Hunt &
Graham 1978), several authors then attempted to obtain an explicit expression of
〈β2〉 as a function of the characteristics of the turbulence in the bulk (Brumley &
Jirka 1988; Banerjee 1990). Such models were recently found to perform well when
compared with mass transfer data obtained in open channels as well as in grid-stirred
tanks (Banerjee, Lakehal & Fulgosi 2004).

In parallel with this evolution of conceptual models, investigation techniques
improved, especially during the last two decades. More detailed measurements of
the near-surface concentration field were made possible by laser-induced fluorescence
(LIF) techniques (Asher & Pankow 1986; Woodrow & Duke 2001; Herlina &
Jirka 2004), as well as by the development of microprobes capable of following
concentration fluctuations (Chu & Jirka 1992). However, these techniques still have
difficulties in resolving the uppermost layers of the flow. Moreover, the attempts made
at a simultaneous determination of the concentration and velocity fields (required to
obtain directly the profile of the turbulent mass flux) have been inconclusive up to
now. In contrast, particle image velocimetry (PIV) techniques now allow the near-
surface eddies and the surface velocity field to be adequately resolved (see e.g. Kumar,
Gupta & Banerjee 1998; McKenna & McGillis 2004).

During the same period, several groups carried out direct numerical simulations
(DNS) of open-channel flow (Handler et al. 1993; Komori et al. 1993; Borue, Orszag &
Staroselsky 1995; Pan & Banerjee 1995). In most of these studies, emphasis was put
on the connection between the ejection of hairpin vortices from the bottom boundary
layer and the large-scale structures in the near-surface region. The most recent DNS
in the same flow configuration included passive heat/mass transfer through the free
surface at Prandtl/Schmidt number ranging from 1 to 5 (Lu & Hetsroni 1995;
Handler et al. 1999; Nagaosa 1999; Yamamoto, Kunugi & Serizawa 2001). These
studies proved very useful in establishing detailed statistics of the dynamic and scalar
fields which are still far beyond the capabilities of laboratory experiments. Moreover,
they revealed a number of important features concerning the connection between
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the vortices ejected from the bottom region and the topology of the near-surface
concentration field.

The main limitation of these DNS studies stems of course from their low Reynolds
number. The corresponding turbulent Reynolds number Re* based on the friction
velocity at the bottom wall and flow depth ranges typically from 150 to 200, which
forces the free surface to lie within the logarithmic layer of the mean velocity profile.
Therefore the turbulence ‘seen’ by the free surface is strongly anisotropic and interacts
directly with the vigorous dynamics of the bottom region. This makes the structure of
the near-surface dynamical and scalar fields observed in these DNS quite specific to
low-Reynolds-number wall-bounded shear flows and prevents some of the important
conclusions of these studies from applying directly to flows of geophysical relevance.
It is thus desirable to develop a detailed analysis of the instantaneous and statistical
structure of the velocity and concentration fields in free-surface flows where turbulence
is closer to isotropy and less dependent on the precise way it is generated, as has
long been achieved experimentally by using grid-stirred tanks (Chu & Jirka 1992;
McKenna & McGillis 2004). Moreover, increasing the turbulent Reynolds number
compared to that of the aforementioned DNS is necessary to remove low-Reynolds-
number effects and obtain predictions valid in high-Reynolds-number flows. This
programme was partly applied by Calmet & Magnaudet (2003, hereinafter referred to
as CM) who used large-eddy simulation (LES) to analyse the statistical structure of
the near-surface region of a high-Reynolds-number open-channel flow in which Re*
was about 1.3 × 103. This high value of the Reynolds number allowed the existence
of an upper region of the flow where turbulence was approximately isotropic and
shear-free and resembled that produced in a grid-stirred tank, even though some
well-identified quantitative differences exist and the two generating mechanisms are
totally different (the near-surface turbulence is generated by the bursting process in an
open-channel flow, by the interaction of vertical jet-like motions created by the grid
oscillation in a grid-stirred tank). Among other things, this study allowed a detailed
and successful comparison of numerical results with the theory elaborated by Hunt &
Graham (1978) to describe the distortion of a homogeneous isotropic turbulence by a
flat rigid surface; as similar conclusions were obtained experimentally by Brumley &
Jirka (1987) in a grid-stirred tank, this reinforces the above view that the two types
of flow exhibit near-surface regions with a similar turbulence structure.

The present paper reports on the next step of the same programme. That is, starting
from the velocity field discussed in CM, we perform several LES runs to compute the
evolution of the concentration field of gases of various diffusivities absorbed through
the free surface of the flow. The Schmidt number is varied from 1 to 200, the latter
value being approximately that of helium in water. In contrast, the Reynolds number
is kept fixed, but we shall see that conclusions concerning its influence on several
statistical quantities can be obtained, either by order-of-magnitude arguments or by
comparison with available low-Reynolds-number DNS. The main questions we wish
to address in this investigation are the following. What is the statistical structure of the
mean and fluctuating near-surface concentration field? How does the thickness of the
various concentration sublayers evolve with the Schmidt and Reynolds number? How
are instantaneous near-surface concentration and velocity fluctuations connected with
each other? What are the characteristic scales of the eddies involved in the transfer?
How does the average mass transfer velocity at the surface depend on the Schmidt
number and on the near-surface turbulence characteristics? In line with the state-of-
the-art summarized above, we think high-Reynolds-number LES results provide new
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insights on these questions and usefully complement the views offered by available
experimental and numerical results.

An important point in the work reported below concerns the scaling of the results.
In the DNS studies mentioned above, the results were always normalized using the
velocity scale u* and the length scale ν/u*. While these wall variables are relevant
when analysing wall-bounded flows, they are not appropriate to describe shearless
turbulence near a free surface and derive general scaling laws for this type of flow
(see § 3 of CM). Indeed, as turbulence is produced ‘far’ from the region of interest,
a proper normalization must be independent of the precise nature of its source.
Moreover, as soon as the concentration field is concerned, it is obvious that the
relevant vertical length scales in the near-surface region depend on the gas diffusivity,
i.e. on the Schmidt number. Particular attention is paid to these aspects in the following
sections, the goal being to make the results as ‘flow’- and ‘gas’-independent as possible.
The structure of the paper is as follows. Aspects of the numerical procedure specific
to the present study are presented in § 2. Section 3 deals with the scaling aspects
mentioned above and analyses the first- and second-order one-point statistics of
the concentration field near the free surface. Section 4 is devoted to the connection
between the instantaneous concentration field and the near-surface turbulent motions.
Section 5 focuses on the scaling of the average mass transfer rate and its connection
with the dynamics of the near-surface flow. Summary and suggestions for future work
are provided in § 6.

2. Numerical procedure
The numerical code employed in this study, the filtering procedures and the dynamic

closure strategy used for evaluating the subgrid-scale stresses and fluxes have been
decribed in Calmet & Magnaudet (1997). Their application to the present flow
configuration, as well as the grid characteristics required to simulate properly the
corresponding large-scale velocity field have been detailed in CM. Here, we only
summarize briefly those aspects that are most closely related to the computation of
the large-scale concentration field.

Once filtered by the computational grid, the conservation equation for the
concentration reads

∂C

∂t
+

∂

∂xj

(C V j ) =
∂

∂xj

[
D

∂C

∂xj

− qj

]
, (1)

where V i is the ith component of the resolved velocity field, C is the resolved
concentration field and the qi = CV i −C V i are the subgrid-scale fluxes to be modelled.
Following Germano’s (1986) decomposition, the qi are found to comprise a so-called

Leonard contribution C V i − C V i which may be directly evaluated by re-filtering
the resolved concentration and velocity fields and their product, and a contribution
involving the unresolved velocity and/or concentration. The latter is modelled using

a subgrid-scale diffusivity model in which the diffusivity is of the form DT = CC∆
2|S|

(Smagorinsky 1963), ∆= (∆1∆2∆3)
1/3 being the local averaged grid scale (∆i is the

grid size in the direction i) and S = (2SijSij )
1/2 being the local magnitude of the

filtered strain rate (Sij is the filtered strain rate tensor). Thus, we finally write

qi = −CC∆
2|S|∂C

∂xi

+ C V i − C V i. (2)
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Similarly to the procedure used for the subgrid-scale viscosity, the parameter Cc

involved in (2) is dynamically computed at each time step by evaluating the difference
between the qi and the subgrid scalar fluxes corresponding to a test grid of size 2∆ and
making use of Germano’s (1992) identity. A local volume filtering of Cc is carried out
to prevent the occurrence of negative values of the total diffusivity D + DT to occur.

The geometry of the flow configuration and the boundary conditions are as follows.
The flow is driven by a constant pressure gradient along the x-direction and periodic
boundary conditions for the filtered velocity and concentration fields are assumed in
this direction, as well as in the spanwise (z) direction. In the vertical (y) direction, the
filtered velocity field obeys a no-slip condition at the bottom wall y =2δ (δ being the
channel half-height) and a shear-free condition at the free surface y = 0; this is made
possible by setting the average pressure gradient to the value −〈τ 〉/2δ, 〈τ 〉 denoting
the averaged shear stress at the bottom wall. We assume that the renewal time of the
diffused species at the free surface is smaller than the smallest time scale involved in
the velocity field, which implies that the filtered concentration keeps a constant value,
say C = 1, at the surface. To drive the diffused species into the liquid and allow its
concentration to reach a statistically stationary distribution, C is assumed to keep
a different constant value, say C =0, at the bottom wall. The concentration field is
initialized with the pure diffusion profile C(x, y, z, t = 0) = 1 − y/2δ.

The underlying flow field is identical to that computed and discussed in CM, with
a flow Reynolds number Re* = 2u ∗ δ/ν based on the friction velocity u ∗ =(〈τ 〉/ρ)1/2

(ρ being the fluid density) set to 1280. As shown in CM, when the flow has reached
a statistically steady state, the resulting integral length scale L in the core is about
0.4δ. Thanks to the high value of Re*, the large-scale turbulent field at y = L, i.e.
below the near-surface region within which the surface distorts the turbulent field,
is fairly close to isotropy with almost identical values of the vertical and spanwise
r.m.s. velocities and a streamwise r.m.s. velocity 30% larger than the latter two. The
corresponding velocity macroscale u (defined so that the averaged turbulent kinetic
energy at y = L equals 3u2/2) is about 0.7u*, yielding a turbulent Reynolds number
Re= 2Lu/ν about 360 (see § 5.1 of CM).

The computations are carried out in a parallelepipedic box of size 2πδ × 3πδ/4 in the
horizontal (x, z)-plane (see CM for the choice of this size). The spatial discretization
in the (x, z)-plane is uniform and makes use of 32 × 64 points. In the vertical direction,
a non-uniform grid with either 68 or 82 points is used, depending on the value of
the Schmidt number. The y-distribution of the grid points is designed so that at
least three points lie within the diffusive sublayer located below the surface. For
Sc= 1, this distribution is symmetric with respect to the midplane y = δ, the smallest
mesh spacing �y near the two boundaries being such that �y+ = u�y/ν ≈ 0.7. As we
expect the thickness of the diffusive sublayer near the free surface to decrease strongly
when the Schmidt number increases, the upper part of the grid is refined for higher
Schmidt numbers. To keep the computation accurate up to Sc= 200, the minimum
grid spacing is reduced to �y+ ≈ 0.056 on the finest grid. After the flow has reached a
statistical equilibrium (characterized in particular by a linear vertical distribution of
the averaged shear stress), time integration is pursued over five to ten turnover times
to obtain converged first- and second-order statistics of the concentration field. These
statistics are obtained by averaging in time as well as in the horizontal directions x

and z. In the following, for any variable Φ whose resolved value is Φ , 〈Φ〉 denotes the
corresponding average and ϕ′′ is the resolved fluctuation, i.e. we have Φ = 〈Φ〉 + ϕ′′,
whereas if all scales were resolved we would access the total fluctuation ϕ′ such that
Φ = 〈Φ〉 + ϕ′.
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3. One-point statistics of the concentration field
3.1. Scaling

As pointed out in § 1, the Reynolds number of the present LES is typically five
times larger than that of available low-Reynolds-number DNS of open-channel flow,
which makes the turbulence near the free surface only weakly infuenced by the
detailed structure of the bottom region. Hence, the most relevant characteristics of
the large-scale near-surface turbulent field are the velocity scale u and the integral
length scale L defined above. Using these normalization scales, present results can
be directly compared with those obtained in other almost equivalent configurations,
such as grid-stirred tanks.

The normalization of concentration fluctuations deserves some more care. It is
customary in the fluid mechanics literature to normalize the concentration difference
1 − 〈C〉 and the resolved fluctuation c′′ by a reference surface concentration c defined
through the relation cu = D|∂〈C〉/∂y|y = 0. The quantity c may be thought of as a
measure of the surface mass flux in a given turbulent field. In the chemical engineering
literature, it is generally preferred to use the concentration difference �C = 1 − Cb

where Cb is the mean concentration in the bulk. It will be shown below that both
normalizations are useful when considering statistical quantities associated with very
different Schmidt numbers. The magnitude of near-surface quantities involving the
concentration fluctuation alone experiences little variation with the Schmidt number,
whereas those involving the correlation between the concentration and velocity
fluctuations strongly decrease when the Schmidt number increases. As �C follows
the former trend whereas c follows the latter, it is suitable when dealing with a wide
range of Schmidt number to normalize quantities such as the r.m.s. of c′′ by �C,
while normalizing the concentration fluctuation involved in quantities such as the
turbulent flux by c. In what follows, �C will be determined by defining the bulk
concentration Cb as the mean concentration at a distance y = L from the free surface,
i.e. �C = 1 − 〈C〉(y = L). With this definition, �C ranges from 0.456 for Sc= 1 to
0.494 for Sc= 200. Note that c and �C are both characteristic of the mass transfer
at the free surface, and do not depend on the transfer at the bottom wall.

To analyse the dynamics of the surface boundary layer, the relevant inner length
scale is obviously y+ = yu/ν. It is also customary to use this viscous length scale in the
discussion of the characteristics of the concentration boundary layer. Nevertheless it
can be shown that a more relevant length scale incorporating directly the main effect
of the Schmidt number can be built. For this purpose, let us start by normalizing (1)
using the scales u and c. Averaging and integrating once with respect to y then yields

1

Sc

∂〈C〉+

∂y+
+ 〈c′′v′′〉+ + 〈q2〉+ = 1, (3)

where 〈C〉+ = (1 − 〈C〉)/c, 〈c′′v′′〉+ and 〈q2〉+ being the dimensionless resolved and
subgrid vertical mass fluxes, respectively. When y+ → 0, the last two terms on the
left-hand side of (3) vanish, and the local mass flux is dominated by molecular
diffusion. This results in a diffusive sublayer where 〈C〉+ follows the linear evolution
〈C〉+ = Scy+. Within this sublayer, the dimensionless fluctuation c′′+ = c′′/c may be
expanded as c′′+ = ay+ +O(y+3), the O(y+2) contribution being zero because ∂2c′′/∂y2

is zero at the surface, as may be seen by expanding (1) near y = 0. Similarly, within the
viscous sublayer in which the vertical gradients of the horizontal velocity fluctuations
fall to zero to satisfy the shear-free condition, the vertical velocity fluctuation evolves
as v′′+ = by+ + O(y+3) (here the O(y+2) contribution vanishes owing to continuity).
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From the above expansions, we conclude that provided Sc � 1, the averaged resolved
turbulent flux evolves as 〈c′′v′′〉+ = 〈ab〉y+2+O(y+4) throughout the diffusive sublayer,
〈ab〉 being a function of both Re and Sc (the condition Sc � 1 is required to ensure that
v′′ evolves linearly throughout the diffusive sublayer). However, within the diffusive
sublayer, effects of the molecular diffusivity dominate and there is no reason for
c′′+ to depend on viscosity (at least at leading order), as c′′+ is a relative fluctuation
normalized by the surface value c which already takes into account the main effects of
the viscosity through its dependence with respect to Re and Sc. Hence, for ay+ to be
independent of the viscosity, a must be a linear function of Sc, and so is 〈ab〉. Then we
may determine the dimensionless distance δ+

c to the surface at which the molecular
and turbulent contributions to the concentration flux reach a similar magnitude,
i.e. the location where the dimensionless turbulent diffusivity 〈ab〉Scy+2/(∂〈C〉+/∂y+)
is unity. As 〈ab〉 and 〈C〉+ have the same dependence with respect to the Schmidt
number, the ratio 〈ab〉/(∂〈C〉+/∂y+) depends only on the turbulent Reynolds number.
This implies that δ+

c , which may be thought of as the dimensionless thickness of the
diffusive sublayer, evolves as

δ+
c = f (Re)Sc−1/2. (4)

The result (4) is not new and has been derived by several authors (e.g. Coantic 1986;
Brumley & Jirka 1988). However, the usual derivation is either based on qualitative
scaling arguments or, in eddy-diffusivity models, makes use of the ratio of the
turbulent diffusivity and eddy viscosity, whereas the latter can only be defined in the
presence of a mean velocity gradient. The present derivation indicates that the same
result can be obtained by a reasoning entirely based on the properties of the mean
and fluctuating concentration and of the normal velocity fluctuation within the
diffusive sublayer.

As (4) shows that δ+
c Sc1/2 depends only on the turbulent Reynolds number, we

conclude that the length scale we seek is y+Sc1/2 = yu/(νD)1/2, which is a mixed length
scale involving both the kinematic viscosity and the molecular diffusivity. Hence, if
our reasoning is correct, when plotted vs. y+Sc1/2, the near-surface profiles of all
statistical quantities involving in some way the turbulent mass flux should collapse
on a single curve, irrespective of the value of the Schmidt number. The following
subsections will prove that this statement is correct.

3.2. Mean concentration

The near-surface profiles of the dimensionless mean concentration (1 − 〈C〉)/�C are
plotted in figure 1 for the four Schmidt numbers Sc =1, 10, 100 and 200. As we
expected, all four profiles collapse onto a single curve, the tiny variations about this
curve being due to a somewhat marginal statistical convergence. Up to Sc1/2y+ ≈ 5.0
the concentration profile is linear, clearly defining a diffusive sublayer (frequently
hereinafter referred to as the inner diffusive sublayer). In this region, figure 1 indicates
(1 − 〈C〉)/�C ≈ 0.072Sc1/2y+. The prefactor 0.072 is of course Re-dependent and will
be shown to be closely related to the mass transfer rate in § 5. Note that in contrast
with the usual near-wall situation, the viscous sublayer attached to the surface is
much thicker than the diffusive sublayer corresponding to Sc= 1, as in CM (§ 5.1)
it was found that the thickness of the viscous sublayer is about 18 ‘surface’ units,
corresponding to y/L ≈ 2.0Re−1/2. The reason for this is that the concentration and
velocity fields experience different surface conditions, one being of Dirichlet type while
the other is of Neumann type. It is also important to notice that the Kolmogorov
sublayer, i.e. the thin subsurface region where the normal velocity grows linearly with
y, extends up to y+ ≈ 8.5, i.e. y/L ≈ 4.0Re−3/4. Hence, we see that when expressed
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Figure 1. Mean concentration profiles (1 − 〈C〉)/∆C in the near-surface region.

in Sc1/2y+ units, the thickness δc of the diffusive sublayer is about half that of
the Kolmogorov sublayer at the present Reynolds number. In other terms we are
suggesting that δc/L ≈ 2.0Re−3/4Sc−1/2, i.e. that the above diffusive sublayer can be
identified with the Batchelor sublayer δB defined by Brumley & Jirka (1988). Indeed,
given the present Reynolds number Re ≈ 360, if δc were scaling as Re−1/2Sc−1/2, Sc1/2δ+

c

should be close to 18 rather than 5. To confirm that δc/L scales with Re−3/4 we also
use the data provided by Yamamoto et al. (2001) who computed mass transfer in an
open-channel flow at a Reynolds number of 200 based on the friction velocity u* and
total depth 2δ. According to the profile of the r.m.s. velocity fluctuations displayed in
their figure 3, we estimate that the surface-influenced region extends over a distance
L ≈ 0.6δ, while the kinetic energy at y = L yields u ≈ 0.88u*, resulting in Re ≈ 105.
Moreover their comment indicates that for Sc= 1 they observe a linear profile of the
mean concentration up to yu*/ν = 4.2, i.e. δ+

c ≈ 3.7. Since the above scaling suggests
that δ+

c should evolve as Re1/4 for a given Schmidt number, we should have δ+
c ≈ 5.0

for Re= 360, which is indeed what we found in figure 1. Although the two Reynolds
numbers are not widely separated, this is another indication that the above scaling
is correct (if δc/L were scaling with Re−1/2, the value obtained by Yamamoto et al.
(2001) should result in δ+

c ≈ 6.9 for Re = 360, which is clearly larger than what is
displayed by figure 1). Hence the combination of present results obtained over a wide
range of Sc but at a single Re with those of a DNS study where Re is 3.5 times
smaller, strongly supports the conclusion that the layer throughout which the mean
concentration profile evolves linearly may be identified with the Batchelor sublayer
δB . An illustration of the relative position of the various sublayers at the present
turbulent Reynolds number Re = 360 is given in figure 2 for Sc= 10.

The diffusive sublayer is followed by a buffer layer where the mean concentration
varies rapidly. Farther from the surface and for high enough turbulent Péclet numbers
(Pe = ScRe), classical arguments (Monin & Yaglom 1973, § 5.7; Yaglom & Kader 1974)
imply the existence of an intermediate region within which the mean concentration
profile obeys a logarithmic law of the form (1 − 〈C〉)/c =A ln y+ + B , A and B being
two ‘universal’ constants. This region is easily detected on the right-hand side of
figure 1, typically for Sc1/2y+ > 40. However the two constants are Sc-dependent in
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Figure 2. The various viscous and diffusive sublayers below the surface for Re= 360 and
Sc=10. Note that for Sc< 5, the outer diffusive layer becomes thicker than the Kolmogorov
sublayer. The dynamically surface-influenced region extends up to y/L ≈ 1, i.e. it is about ten
times thicker than the viscous sublayer.

the ((1 − 〈C〉)/�C, Sc1/2y+) representation. This makes it clear that the length scale
Sc1/2y+ is only appropriate close to the surface, whereas (1 − 〈C〉)/�C is necessarily
Sc-dependent in the bulk because the molecular diffusivity no longer plays a role.
In the core of the flow (not shown here), the mean concentration becomes a linear
function of the distance to the surface. Given the negligible value of the first term on
the left-hand side of (3) in this region, this indicates that, far enough from the surface,
the turbulent diffusivity is constant, as we expect in a high-Reynolds-number, almost
homogeneous, turbulent flow.

3.3. Second-order statistics

Figure 3 shows the vertical profiles of the r.m.s. concentration fluctuation
c∆ = 〈c′′2〉1/2/�C over a region corresponding to one integral length scale. All profiles
indicate that the absolute maximum of the r.m.s. fluctuation is reached very close to
the surface; the higher the Schmidt number, the closer to the surface the location of
this maximum. The values of the maximum of c∆ are found to depend only weakly
on the Schmidt number, which indicates that they are mostly determined by the
turbulence intensity. In contrast, while c∆ keeps a significant magnitude in the bulk
for Sc= 1, it is almost zero out of the near-surface region for the other three Schmidt
numbers. This reflects the fact that for high Schmidt numbers, the resistance to the
transfer is essentially located in the diffusive sublayer, while the small amount of
dissolved gas that succeeds in crossing this sublayer is then quickly mixed in the bulk.

We can of course wonder whether this decrease of c∆ as y increases is not due
in good part to the increase of the vertical grid spacing �y. Indeed, as the grid
becomes coarser, the unresolved part of the concentration fluctuation increases.
However, it may be shown that the relative contribution of scalar structures smaller
than the Kolmogorov microscale (those belonging to the so-called viscous-convective
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Figure 3. Resolvable r.m.s. concentration fluctuations c∆ = 〈c′′2〉1/2/�C in the upper part of
the flow.
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Figure 4. Resolvable r.m.s. concentration fluctuations c∆ in the near-surface region.

subrange) is of O(Re−1/2 log(Sc)). Hence they only provide a small correction to the
total variance. Similarly, the contribution of structures whose size is between the
Kolmogorov microscale and the cutoff length scale �y is of O((�y/L)2/3), provided
the cutoff lies within the inertial subrange. As the present grid is such that �y is
still about 3.3 (resp. 6.5) Kolmogorov microscales for y/L =0.5 (resp. 1.0), these
unresolved contributions are small throughout the near-surface region. Hence we can
conclude that, provided the mechanisms that generate the concentration fluctuation
are properly captured (this will be shown to be the case in § 3.4), the grid is able
to predict properly the magnitude of the total r.m.s. concentration throughout the
near-surface region y/L < 1.

The behaviour of the r.m.s. fluctuations in the near-surface region are seen in more
detail in figure 4. This figure confirms the relevance of the scaling derived in § 3.1,
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as the maximum of c∆ is reached around Sc1/2y+ = 15 whatever the value of Sc. In
other terms, figure 4 shows that for a given Re, the location of this maximum evolves
as Sc−1/2. Moreover, having noticed that at the present Reynolds number the viscous
sublayer extends up to y+ ≈ 18 which corresponds to y/L ≈ 2.0Re−1/2, we infer that c∆

reaches its maximum at a distance δD ≈ 2.0Re−1/2Sc−1/2, i.e. 2.0Pe−1/2. This value of δD

corresponds to the thickness of the ‘outer diffusive sublayer’ identified by Brumley &
Jirka (1988). This outer diffusive layer is indicated in figure 2; note that with the
moderate value of the turbulent Reynolds number considered here, δD is less than the
thickness of the Kolmogorov sublayer for Sc > 5. The Re−1/2 scaling suggested above
may be confirmed by using the low-Re DNS results of Handler et al. (1999) (Sc =2,
Re ≈ 95). They mention that the r.m.s. concentration fluctuation reaches a maximum
at yu*/ν = 8, i.e. yu/ν ≈ 7.0 (u ≈ 0.88u* in their case). As their figure 5 indicates that
the horizontal vorticity fluctuations start to be affected by the shear-free condition
at yu*/ν ≈ 11, we deduce that the viscous sublayer has a dimensionless thickness
δV u/ν ≈ 10 in their case. Hence we conclude that δDu/ν = δV u/νSc−1/2 ≈ 7.0, which
confirms that the r.m.s. concentration reaches its maximum at y ≈ δD .

The maximum value of c∆ is only slightly Sc-dependent and lies in the range 0.31–
0.35 (the two cases Sc= 10 and 100 are somewhat poorly converged, so that the slightly
lower value of the corresponding maxima and the crossing of the corresponding
curves with those for Sc= 1 and 200 are certainly meaningless). These values may
be compared with those obtained in low-Re open-channel DNS by Handler et al.
(1999) (Sc= 2, Re* = 180) and Yamamoto et al. (2001) (Sc= 1 and 5, Re* = 200).
After evaluating L and ∆C in both groups of simulations, it turns out that the
maximum of c∆ is always in the range 0.33–0.35, which confirms present findings.
Recent experimental results obtained by Atmane & George (2002) in a grid-stirred
tank using an oxygen microprobe also indicate a maximum of c∆ about 0.30. The slope
of the c∆-profiles right at the surface does not depend on Sc as will be shown below,
which confirms that Sc1/2ν/u and �C are indeed the correct length and concentration
scales describing the vertical variations of the r.m.s. concentration fluctuation very
close to the surface. However, figure 4 reveals that the profiles of c∆ remain Sc-
dependent over most of the near-surface region, even when plotted against Sc1/2y+,
which indicates that the r.m.s. concentration fluctuation depends in a complex way on
the above scales as well as on the scales L and c. This contrasts with the behaviour of
the mean concentration for which figure 1 indicates that the effect of the outer length
scale occurs only at larger distances from the surface, typically for Sc1/2y+ > 80. This
suggests that the evolution of the concentration fluctuations and those of the mean
concentration are not affected in the same way by molecular diffusion.

Figure 5 displays the asymptotic behaviour of c∆ and (cv)+ = 〈c′′v′′〉/uc as
Sc1/2y+ → 0 for the two extreme Schmidt numbers Sc= 1 and 200. In agreement
with the expansions established in § 3.1, c∆ is found to evolve linearly with Sc1/2y+

in the top part of the diffusive sublayer, while the resolved turbulent flux exhibits
a quadratic behaviour. The normalization of concentration fluctuations by �C and
that of turbulent fluxes by cu is found to produce Sc-independent values of the ratios
c∆/Sc1/2y+ and (cv)+/Scy+2 (as the magnitude of the subgrid terms increases with the
Schmidt number, these terms result in a slightly smaller magnitude of the resolved
quantities for Sc= 200, as compared with those corresponding to Sc= 1). Present
calculations yield the asymptotic values c∆/Sc1/2y+ ≈ 0.052 and (cv)+/Scy+2 ≈ 8.3
10−3. An improved estimate of the turbulent flux may be obtained by adding the
subgrid terms, i.e. the Leonard and modelled fluxes, to the resolved flux. As shown
in figure 6, the Leonard flux (second and third terms on the right-hand side of (2)
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Figure 5. Asymptotic behaviours of the r.m.s. concentration fluctuation and turbulent
flux near the surface. Sc= 1: ——, 10c∆/Sc−y+; — —, 100(cv)+/Scy+2. Sc= 200: – – –,
10c∆/Sc−y+; – - - –, 100(cv)+/Scy+2.
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Figure 6. Turbulent mass flux in the vicinity of the surface (all terms are normalized by uc).
Resolvable flux 〈c′′v′′〉: – – –, Sc= 200; —�—, Sc= 1. Modelled subgride-scale flux: – .. –,
Sc= 200; —�—, Sc= 1. Leonard flux: –.–, Sc= 200; —�—, Sc= 1. Total turbulent flux: ——,
Sc= 200; —�—, Sc= 1.

for i =2) contributes about 15% in the total flux at a distance Sc1/2y+ ≈ 20 from the
surface for both Schmidt numbers. The modelled flux (first term on the right-hand
side of (2)) remains significantly smaller in both cases. The relative contribution
of the subgrid-scale terms increases as the surface is approached and reaches 32%
(resp. 40%) at the grid point closest to the surface for Sc= 1 (resp. 200). If these
subgrid-scale terms are added to the resolved flux, the limit behaviour of the total
turbulent flux 〈c′′v′′ + q2〉+ is found to be 0.011Scy+2 for both Schmidt numbers.
The above results for c∆ and (cv)+ may be used to compare the surface value of
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Figure 7. Budget of 〈c′′2〉 in the near-surface region (all terms are normalized by (cu)/D. ——,
production Pc; ——, turbulent transport Tc; — - —, cascade term TLc; — - - —, diffusion
Dc; — —, dissipation εc . Sc= 1 (thin lines); Sc= 200 (thick lines).

the correlation coefficient (cv)+/c+v+ (with c+ = (�C/c)c∆ and v+ = 〈v′′2〉1/2/u) with
that obtained in the DNS of Nagaosa (1999) at a Reynolds number roughly 5 times
smaller than the present one. Using the asymptotic behaviour of the normal velocity
fluctuation reported in CM, i.e. v+/y+ ≈ 1.51 10−2 (in the present normalization), we
find (cv)+/c+v+ ≈ 0.77 at the surface, in good agreement with the value 0.74 reported
by Nagaosa.

3.4. Budget of the concentration variance

Let us now examine the budget of the resolved variance 〈c′′2〉. As the flow and the
concentration field are statistically stationary and periodic in the x- and z-directions,
this budget reduces to

0 = −2〈c′′v′′〉d〈C〉
dy

+ εc +
d

dy

[
−〈c′′2v′′〉 − 2〈L′′

c2c
′′〉 + 〈D + DT 〉d〈c′′2〉

dy

]
, (5)

where the scalar ‘dissipation’ εc is dominated by the term −2〈(D + DT )(∂c′′/∂xk)
2〉

but also comprises additional secondary contributions resulting from the fluctuations
of the Leonard flux and subgrid-scale diffusivity (Calmet & Magnaudet 1997). The
other terms on the right-hand side of (5) represent production of 〈c′′2〉 by the mean
concentration gradient (Pc), turbulent transport by the resolved normal velocity
fluctuation (Tc), transport by the largest unresolved normal velocity fluctuation (TLc),
and diffusion (Dc). The various terms in (5), normalized by (uc)2/D, are plotted in
figure 7 for Sc= 1 and Sc= 200 vs. the normalized distance Sc1/2y+. The profiles of all
terms are seen to collapse nicely on Sc-indepedendent curves, up to small differences
due to the subgrid-scale contributions.

All terms in these budgets go to zero at the surface, except dissipation and viscous
diffusion which reach their maximum there and balance each other. These behaviours
agree with the Taylor expansions near y+ = 0 by which we find that Pc, Tc and
TLc decay like y+2 near the surface. The production term is positive everywhere. As
d〈C〉/dy is negative, this indicates that 〈c′′v′′〉 is positive, which may be interpreted
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as the fact that 〈c′′v′′〉 is dominated by contributions corresponding to the first
(v′′ > 0, c′′ > 0) and third (v′′ < 0, c′′ < 0) quadrants. This is because downwelling
(resp. upwelling) motions essentially carry blobs of fluids whose concentration in
contaminant is higher (resp. lower) than the local mean because they come from the
surface (resp. bulk) region where C is maximum (resp. minimum). In contrast, the
transport term Tc changes sign very close to the surface, at a location ym such that
Sc1/2ymu/ν ≈ 10. For y < ym, the transport term is positive because upwelling motions
tend to increase the local concentration variance by bringing large concentration
fluctuations produced in the region where the r.m.s. concentration fluctuation reaches
its maximum (Sc1/2y+ ≈ 15). Similarly, for y > ym, Tc is negative because these large
concentration fluctuations are brought there by downwelling motions. This behaviour
is directly reflected in the skewness factors of c′′ and v′′ (not shown). Indeed, the
skewness factor of v′′ is negative everywhere (keeping in mind that the y-axis is
directed downwards) whereas that of c′′ is found to be negative only for Sc1/2y+ < 15,
approximately, i.e. within the outer diffusive layer (the surface values of the skewness
factor S(c′′) are about −1.0). Hence, as already noticed by Handler et al. (1999), it
appears that the strongest concentration fluctuations are associated with the strongest
vertical velocity fluctuations (upwellings) only within a very thin layer of fluid below
the surface, which we may roughly identify with the outer diffusive sublayer.

Four main near-surface regions may be observed in the budget (5). Far enough
from the surface (typically for Sc1/2y+ > 45), dissipation and production are essentially
in balance. Then there is an intermediate region (typically 20 < Sc1/2y+ < 45) where
turbulent transport and dissipation act together to balance production. The third
region (3.5 < Sc1/2y+ < 20) is that located about the broad maximum of 〈c′′2〉. This is
also the region where Pc reaches its maximum (Pcmax≈ ≈ 0.45) and where Tc changes
sign. Since the profile of 〈c′′2〉 exhibits a significant negative curvature in this zone,
the diffusion term takes negative values which, together with the dissipation term,
balance the large positive values ofPc. In the fourth region, very close to the surface,
Pc and Tc become negligibly small and the large negative values of εc are balanced
by the diffusion term Dc which has changed sign and reaches large positive values
because of the rapid quadratic growth of 〈c′′2〉 with the distance to the surface.

Note that as 〈c′′v′′〉 is constant throughout the flow outside the outer diffusive layer
(see (3)), its value at large Sc1/2y+ is entirely determined by the processes that take
place in the top part of this thin layer. Hence, provided this crucial region is accurately
described by the computational grid (which we expect to be the case because the grid
is fine enough there for the LES to be locally a DNS in the vertical direction), the
value of the production term Pc is properly predicted throughout the flow (there is
no doubt that even though �y increases with the distance to the surface, the grid
remains everywhere capable of capturing the small mean concentration gradient that
subsists below the outer diffusive layer). As we saw above that, for large Sc1/2y+, the
concentration variance is controlled by the local value of Pc, we conclude that the rate
at which this variance is produced is correctly predicted whatever the distance to the
surface. Combined with the comment made at the beginning of § 3.2, this makes us
confident that the values of the resolved r.m.s. concentration predicted by the present
LES approach provide realistic estimates of the total r.m.s. concentration throughout
the entire near-surface region.

To conclude this analysis, it is worth comparing the maximum intensity of the
r.m.s. concentration fluctuations near a free surface with its near-wall counterpart. As
shown in figure 2, c∆ reaches a maximum of about 0.35 near the surface, whereas the
maximum found near the bottom wall (not shown) is about 0.20 when normalized in
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Figure 8. (a) Iso-contours of the normal velocity fluctuation in the plane y+ = 0.07 (from
–10−4 to 10−4 with an increment of 10−5). Negative values: dashed lines; positive values: solid
lines. (b) Instantaneous streamlines on the surface.

the same manner. The reason for this difference may be understood by evaluating the
ratio εc/Pc. In the former case this ratio is about 0.3 in the region of the maximum,
while it is about 0.6 in the latter case. The absence of shear near the free surface
results in a smaller number of dissipative small-scale structures (Hunt 1984) and
hence in a lower value of the ratio εc/Pc, which in turn allows the concentration
fluctuations to reach higher values.

4. Relationship between the near-surface concentration and velocity fields
The most widely accepted conclusion of the numerous available investigations

devoted to mass transfer accross a shear-free interface is probably the validity of the
concept of surface renewal (Highbie 1935; Dankwerts 1951), remarkably supported
by the measurements of Komori, Murakami & Ueda (1989). In this section, we try
to provide further information on the connection between the mass transfer process
and the structure of the underlying turbulence by examining the spatial relationship
between the resolved concentration field and the velocity fluctuations in the near-
surface region.

In open-channel flows, as well as in grid-stirred tanks, near-surface dynamics are
dominated by ‘patchy’ structures, i.e. large-scale structures without any preferential
orientation. In both cases, the upwelling structures (frequently referred to as
updraughts or splats) result from the ejection of fluid blobs from the bottom part
of the flow (see e.g. Komori et al. 1989 for a discussion of the connection with the
bursting process in the case of small-depth open-channel flow). The vanishing of the
vertical velocity at the surface then forces updraughts to stretch in the horizontal
directions and roll up, resulting in the creation of downwelling structures (also
referred to as downdraughts or antisplats) when two neighbouring updraughts collide
(Perot & Moin 1995). Iso-contours of the upwelling (v′′ < 0) and downwelling (v′′ > 0)
motions very close to the surface are shown in figure 8(a). Not surprisingly, the
typical horizontal size of these structures is found to be about 2L, corresponding
to the turbulence macroscale (Tennekes & Lumley 1972, p. 273). The presence of
upwelling and downwelling large-scale motions in the immediate vicinity of the
surface results in complex displacements of fluid elements right at the surface. An
instantaneous view of the large-scale surface streamlines taken at the same time as
the normal velocity field of figure 8(a) is shown in figure 8(b). As may be expected,
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Figure 9. Iso-contours of c′′ in two horizontal planes (Sc =1). (a) y+ ≈ 1.2 (from −0.12 to
0.05 with an increment of 0.01); (b) y+ ≈ 100 (from −0.15 to 0.1 with an increment of 0.01).
Negative values: dashed lines; positive values: solid lines.
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Figure 10. Iso-contours of v′′ and c′′ (Sc= 1) in the near-surface part of a vertical plane.
(a) c′′ (from −0.3 to 0.2 with an increment of 0.05); (b) v′′ (from −0.04 to 0.03 with an
increment of 0.005). Negative values: dashed lines; positive values: solid lines.

upwelling (resp. downwelling) motions in figure 8(a) are found to correspond to
sources (resp. sinks) in figure 8(b). Within the Kolmogorov sublayer described in
§ 3.2, we may write v′′|y ≈ (∂v′′/∂y)|0y = −(∇S · vS)y, where ∇S · vS stands for the so-
called surface divergence of the instantaneous velocity. In other words, figure 8(a)
provides an instantaneous representation of the horizontal dilation/compression rate
of the surface velocity field. Figure 9 shows some iso-contours of c′′ for Sc =1 in two
horizontal planes, one located within the diffusive sublayer (y+ ≈ 1.2), the other in
the log-layer of the mean concentration profile (y+ ≈ 100). The largest concentration
fluctuations in the plane y+ ≈ 1.2 are seen to be negative, corresponding to the action
of upwelling motions, but such events are rare and most of the surface in this plane
is occupied by small positive fluctuations associated with downwelling motions that
drive the contaminant towards the bulk. In contrast, a larger fraction of the surface
corresponds to negative values of c′′ in the plane located farther from the surface,
suggesting that the mixing process there is mostly governed by the upwelling motions
which are statistically more vigorous than the downwelling motions. A vertical cross-
section of c′′ (for Sc =1) and v′′ throughout the near-surface region is shown in
figure 10. This plot reveals a succession of high- and low-concentration structures
with various vertical sizes. Not surprisingly, comparison of figure 10(a) with the
snapshot of the vertical velocity fluctuations (figure 10b) shows that upwelling (resp.
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Figure 11. Near-surface iso-contours of the concentration for Sc= 200. (a) c′′ in a vertical
plane (from −0.3 to 0.2 with an increment of 0.05); (b) instantaneous concentration c′′+ 〈C〉 in
the same plane; (c) c′′ in the horizontal plane y+ ≈ 0.07 (from −0.12 to 0.05 with an increment
of 0.01). Negative values: dashed lines; positive values: solid lines.

downwelling) motions contribute to low (resp. high) concentration. The maximum
values of c′′ arise around y = 0.1L, i.e. y+ = 18, in line with figure 4. In this region,
the upwelling structures have more energy than the downwelling ones, so that the
turbulent flux 〈c′′v′′〉 is dominated by the contribution of upwelling motions carrying
low-concentration fluid (third quadrant). A vertical cross-section of the iso-contours
of c′′ at Sc =200 is provided in figure 11(a). The concentration patches now extend
over a much thinner layer whose typical thickness is about 0.04L, i.e. ten surface units.
The instantaneous concentration field corresponding to figure 11(a) is shown in grey
levels in figure 11(b). The diffusive sublayer is clearly visible at the top. Its thickness
is seen to undulate slightly, owing to the alternate compression and dilation induced
by the updraughts and downdraughts. The high-concentration structures driven by
the downdraughts mostly take the form of ‘needles’ that penetrate into the flow
interior. These needles represent the dominant large-scale mode by which the pol-
lutant is transferred from the surface towards the bulk. Obviously, this picture
only describes the behaviour of structures which are large (typically O(L)) in the
horizontal direction. Herlina & Jirka (2004) resolved much smaller concentration
structures (typically a few per cent of L)) using an LIF technique. The structures they
report look rather like thin layers torn away from the diffusive sublayer when the
latter is peeled off by a turbulent eddy, and then stretched and fold by downwelling
eddies. For moderate-to-high Re, there is of course a broad and continuous spectrum
of concentration structure sizes and we believe the large-scale structures revealed by
the present LES and the small-scale ones detected by the LIF are just two partial and
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complementary views of a much more complex reality whose complete description is
far beyond present computational and experimental capabilities.

Figure 11(c), which corresponds to the same instantaneous concentration field as
figures 11(a) and 11(b), shows the iso-concentration structures in the horizontal plane
y+ =0.07. In spite of the close vicinity of the surface, patchy structures are clearly
visible, with positive and negative values of c′′ covering almost the same percentage
of the plane. The above snapshots, especially figures 9(a) and 11(c), emphasize the
sensitivity of the concentration field to the large-scale dynamics of the turbulent
field, even within the diffusive sublayer where molecular effects are dominant. Indeed,
the iso-contours of c′′ (figure 11c) and those of v′′ (figure 8a) at the same distance
from the surface just mirror each other, as upwelling structures impinging on the
surface carry low concentration fluid and vice versa. As we saw that there is a linear
relationship between v′′ and ∇S · vS within the Kolmogorov sublayer, we conclude
that there is a one-to-one correspondence between the concentration fluctuation and
the surface divergence within the diffusive sublayer. Note that in contrast with low-
Re investigations where a significant degree of correlation between streamwise or
spanwise vorticity and near-surface concentration was observed (Komori et al. 1993;
Handler et al. 1999; Nagaosa 1999), no such feature was noticed here. This suggests
that such strong correlations are a distinctive feature of low-Re open-channel flows
where most of the bursts emanating from the bottom boundary layer interact directly
with the surface, whereas at high enough Reynolds number, the two regions are more
widely separated and the only dynamical quantity with which the near-surface scalar
field correlates well is the vertical velocity.

Figure 12 shows two-point streamwise correlation coefficients of the normal velocity
fluctuation (Rvv) and concentration fluctuation (Rcc) at the same vertical location and
for the same Schmidt numbers as in figures 9(a) and 11. In both cases, it turns out that
the profiles of Rcc and Rvv are very similar. In particular, both curves reach a negative
minimum for a separation distance rx/L of about 2, corresponding to the macroscale
2L. Indeed, this distance represents the separation between two neighbouring zones
where the vertical velocities have opposite signs. The minimum of Rvv and Rcc is
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Figure 13. Longitudinal co-spectra of c′′ and v′′: (a) y+ ≈ 0.07; (b) y+ ≈ 1.2. ——, Sc= 1;
— —, Sc= 10; – – –, Sc= 100; – - –, Sc= 200.

much more prominent in the plane located closer to the surface (y+ ≈ 0.07), where
downwelling structures are generated by the impingement of the upwelling ones
on the surface. As expected from the comparison of figures 8 and 11, the profile
of Rcc(Sc =200) very closely follows that of Rvv up to rx/L = 3, which reflects the
fact that molecular diffusion plays almost no role in the structure of the large-scale
concentration field at such a high Schmidt number. In contrast, Rcc(Sc = 1) exhibits
some differences with Rvv for rx/L > 1, making the effect of molecular diffusion more
apparent.

The correlation between concentration and normal velocity fluctuations may also
be investigated by examining the co-spectrum of these two quantities. The normalized
streamwise co-spectrum Evc is defined as

Evc(y, kx) =
1

Lx

Re

{∫ +Lx/2

−Lx/2

〈v+(x, y, z, t)c+(x + rx, y, z, t)〉 exp(−ikxrxdrx)

}
, (6)

where Re denotes the real part of the expression and Lx is the length of the
computational domain in the x-direction. Figure 13 shows Evc at two different
locations y+ ≈ 0.07 and y+ ≈ 1.2 for various Schmidt numbers between 1 and 200. At
both locations, it is clearly seen that the higher the Schmidt number, the stronger the
correlation between the velocity and the concentration fluctuations, which illustrates
how the sensitivity of the mass transfer process increases with Sc. More precisely, it
may be observed that for y+ ≈ 0.07 (which lies within the diffusive sublayer for all the
reported values of Sc), the maximum of Evc grows almost linearly with Sc, which is
in line with the linear dependence of c+ with respect to Sc within the inner diffusive
sublayer (see § 3.1). The increase of the maximum of Evc with Sc is still observed for
y+ ≈ 1.2 but it does not follow a linear trend any more. This is because y+ ≈ 1.2 lies
within the diffusive sublayer only for Sc =1, while it lies within the buffer layer of
the concentration field for both Sc =10 and 100.

The evolution of Evc with kx also deserves some comments, although the low-
wavenumber part of these one-dimensional co-spectra is obviously contaminated by
aliasing effects. First, it is apparent that the magnitude of Evc reaches a maximum
or a plateau for kxL � 1.5, i.e. for separation distances larger than 4L, approximately.
As the distance λx separating two neighbouring updraughts or downdraughts is
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Figure 14. Averaged mass transfer coefficient. �, present study; – . –, 0.072 Sc−1/2.

approximately 4L, the two-point correlation between c′′ and v′′ is indeed expected to
be positive for separations of the order of λx . All co-spectra exhibit a sharp negative
slope in the range 1.5 < kxL < 3.0, and there is virtually no contribution of higher
wavenumbers. This allows us to draw two conclusions. First, on the technical side,
kxL =3 is less than the maximum streamwise wavenumber (kxL)max ≈ 6.4 allowed by
our computational grid, which makes us confident that the present LES captures all
the important features of the mass transfer process. Then, from a physical point of
view, the co-spectra of figure 13 emphasize the fact that the integral

∫ ∞
0

Evc(kx) dkx is
dominated by contributions corresponding to wavelengths λ such that λ� λx , i.e. by
large-scale structures.

5. Mass transfer rate and near-surface hydrodynamics
5.1. LES results

The determination and prediction of the average mass transfer rate across a gas–liquid
interface has been the subject of a huge literature, as this quantity is a direct measure
of the efficiency of the absorption processes that take place at the air–sea interface
as well as in many chemical reactors. Although this measure is global, it is frequently
the only one accessible to laboratory experiments, since most determinations of the
mass transfer efficiency are performed using concentration measurement techniques
that only give access to space- and time-averaged concentrations. The mass transfer
rate is usually defined as

KL/u0 = − D

u0δC

∂〈C〉
∂y

∣∣∣∣
y=0

, (7a)

where KL is the so-called mass transfer velocity, u0 is some characteristic velocity
scale and δC is the concentration difference between the surface and the bulk. Setting
u0 = u and δC = �C, mass transfer coefficients are readily obtained from present LES
data (note that with these definitions we also have KL/u = c/�C). These coefficients
are plotted in log–log coordinates in figure 14. This plot clearly shows that KL/u

is proportional to Sc−1/2 over the whole range of Schmidt numbers explored here.
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This result is obviously not new since it may be considered as the major prediction
of renewal theories (Highbie 1935; Danckwerts 1951). Nevertheless, as available
DNS involving shear-free surfaces mostly considered Schmidt numbers ranging only
from 1 to 5, it seems that present results provide one of the first computational
evidences supporting this prediction over a wide range of Schmidt number. The Sc−1/2

dependence predicted in the present investigation is also of interest with respect to the
LES methodology, as it indicates that the dynamic subgrid-scale model employed here
is capable of predicting reliable variations of the mass transfer coefficient irrespective
of the Schmidt number, i.e. of the size of the smallest scalar structures. This statement
must however be tempered by the fact that the grid we use in the vicinity of the
surface is fine enough to capture the small vertical scales of the scalar field (i.e. the
simulation is in some sense ‘direct’ in this direction), so that in this crucial region the
subgrid-scale model essentially provides the contribution of the unresolved horizontal
scales.

Another quantity of interest is the r.m.s. mass transfer fluctuation defined as

kL/u0 =
D

u0δC

〈(
∂c′

∂y

)2〉1/2∣∣∣∣
y=0

. (7b)

This quantity which can hardly be determined in experiments may easily be extracted
from the present results by remarking that, owing to the linear growth of the
concentration fluctuation in the limit Sc1/2y+ → 0, the scalar dissipation εc reduces to
D〈(∂c′/∂y)2〉 at the surface. It then turns out that the relative r.m.s. fluctuation of
the mass transfer velocity is kL/KL =(ε+

c /2)1/2|y =0, with ε+
c = Dεc/(uc)2. According

to figure 6, and disregarding small variations with the Schmidt number caused by
subgrid-scale contributions, we conclude that kL/KL is about 0.70, irrespective of the
value of Sc. This indicates that the mass transfer rate at a free surface is a strongly
fluctuating quantity, as the magnitude of its fluctuations is of the same order as its
average value. Note for the sake of comparison that Calmet & Magnaudet (1997)
found the value of kL/KL at a solid wall to decrease consistently from about 0.5 for
Sc =1 to about 0.35 for Sc =200.

Coming back to KL, we find that the results displayed in figure 14 may be accurately
fitted by the simple law

KL/u ≈ 0.072Sc−1/2. (8)

The prefactor 0.072 was already encountered in the discussion of figure 1 where we
observed that the mean velocity profile evolves as (1−〈C〉)/�C ≈ 0.072y+Sc1/2 within
the diffusive sublayer. Since we also know from (1) that (1 − 〈C〉)/c = Scy+ there, we
have c/�C = 0.072Sc−1/2, in agreement with (8).

To check the accuracy of the prefactor in (8), we critically examined available
experimental data sets. In many of them, the mass transfer rate is affected in a
subtle way by the presence of surfactants, resulting in values lower than expected
at a shear-free interface (even seeding particles used in PIV measurements may
contaminate significantly the surface as shown by McKenna & McGillis 2004).
Moreover, most of the data obtained in open-channel flows correspond to situations
where the bursts emanating from the bottom boundary layer interact directly with
the near-surface region and produce ripples on the surface, surprisingly resulting in
a lower mass transfer rate as compared with that found with a flat free surface
(Knowlton, Gupta & Banerjee 1999). In contrast, as discussed in § 1, the situation
computed here is similar to that obtained in a grid-stirred tank, so that the most
meaningful comparison seems to be with data obtained in such devices. To date, the
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best of these data are probably those reported by McKenna & McGillis (2004) who
performed extensive simultaneous measurements of the near-surface flow structure
(using PIV) and oxygen absorption (Sc ≈ 490). They also paid particular attention to
surface contamination and considered both clean and ‘dirty’ interfaces in the range
280 � Re � 103, approximately. Averaging the various values of KL that they obtained
with clean interfaces yields, for instance, Sc1/2KL/u = 0.077 (Re = 282) and 0.066
(Re = 469). Assuming that Sc1/2KL/u varies as aReb in between these two Reynolds
numbers, we then obtain Sc1/2KL/u ≈ 7.15 × 10−2 for Re = 360. This experimental
value is in excellent agreement with that corresponding to the LES prediction (8),
which provides an additional indication that the important features of the mass
transfer process are correctly captured by the present numerical approach.

5.2. Relevance of the concept of surface divergence

Obviously, the prefactor in the right-hand side of (8) depends on Re, and this
dependence cannot be directly extracted from our numerical results, since we did
not vary the Reynolds number. However the corresponding information can be
inferred indirectly by revisiting the analysis of the one-dimensional concentration
equation performed by McCready et al. (1986) in the light of our LES results.
Clearly, within the Kolmogorov sublayer, the driving term of this equation may
be written as β(t)yd〈C〉/dy, β(t) denoting the strain rate ∂v′/∂y. The question is
then to determine which among the other terms in the concentration equation
balances the above driving term. In Fourier space, the magnitude of ∂c′/∂t at a
given frequency ω is ωĉ(ω), ĉ(ω) being the corresponding Fourier component of the
concentration fluctuation, whereas the magnitude of the diffusive term is D∂2ĉ/∂y2.
In § 3.2, we found that the thickness of the diffusive sublayer throughout which
the mean concentration profile is linear is nothing but the Batchelor microscale
δB = LRe−3/4Sc−1/2. As this sublayer is that which determines the mass transfer
rate (see (7a)), we can write, for y < δB , D∂2ĉ/∂y2 ∼ Dĉ/δ2

B = νRe3/2L−2ĉ. Using the
estimate ε ∼ u3/L, the latter expression may be re-written in the form (ε/ν)1/2ĉ, which
shows that the characteristic frequency of the vertical diffusion is the Kolmogorov
frequency fk = (ε/ν)1/2. As horizontal diffusion within the diffusive sublayer is driven
by large-scale motions, the characteristic frequency of horizontal diffusion is smaller
than fk by a factor of O(Re−3/2Sc−1). Similarly, the results of § 4, allow us to
conclude that the characteristic frequency of the advective terms is u/L. We thus
conclude that in the limit y → 0, vertical diffusion is the dominant term in the
concentration equation throughout the whole range of frequencies encountered in
the velocity field, i.e. up to the Kolmogorov frequency. Then, defining the Fourier
component β̂(ω) of the vertical velocity gradient and noting that d〈C〉/dy ∼ �C/δB ,

we have within the Batchelor sublayer, ĉ(ω) ∼ δBβ̂(ω)y�C/D. This estimate implies
that the co-spectrum Evc(ω) of the concentration and vertical velocity fluctuations
evolves as Evc(ω) ∼ δBEβ(ω)y2�C/D, Eβ(ω) denoting the frequency spectrum of β .
By virtue of the definition of the inner diffusive sublayer, the turbulent mass flux
〈v′c′〉 =

∫ ∞
0

Evc(ω)dω and the molecular mass flux Dd〈C〉/dy reach equal magnitudes
at the outer edge y = δB of this sublayer, which yields

δB ∼ D1/2〈β2〉−1/4 (9a)

and therefore

KL∼D1/2〈β2〉1/4. (9b)
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The scaling (9b) was first obtained by McCready et al. (1986) who suggested that
it is valid for the part of the concentration spectrum corresponding to ‘low enough’
frequencies. What our LES results indicate is that (9b) is actually valid throughout
the whole spectrum, since the diffusion term exceeds the time-rate-of-change term
up to the Kolmogorov frequency fk . Hence the ‘renewal’ frequency τ−1 involved in
the Highbie–Dankwerts model is confirmed to be 〈β2〉1/2. A convincing experimental
support to this conclusion was provided by McKenna & McGillis (2004) under
a broad range of hydrodynamic conditions (flat or wavy surface, with or without
surfactants).

Note that if the thickness of δB were varying as LRe−1/2Sc−1/2 (i.e. the mass transfer
rate were governed by the outer diffusive layer rather than the Batchelor sublayer),
the above analysis would imply that the time-rate-of-change term would dominate
over the diffusive term for ω > u/L. This would result in a mass transfer velocity

KL ∼ D1/2

( ∫ ∞

0

(Eβ(ω)/ω) dω

)1/2

∼ D1/2(Eβ(0))1/2

instead of (9b), meaning that only the low-frequency contribution to the surface
divergence would contribute to KL. This makes it clear that the crucial reason why
the mass transfer rate depends on the cumulative strain rate 〈β2〉 and not only on its
low-frequency (or low-wavenumber) contents is because the inner diffusive sublayer
scales as Re−3/4.

To compare our results with the theoretical model (9b), we need the r.m.s.
value of the surface divergence. This information is provided by figure 3 of CM
which indicates (after a proper renormalization in terms of u instead of u*)
(〈v′2〉1/2/y)y = 0 = 〈β2〉1/2 ≈ .015u2/ν. Using this result, we may re-write (8) in the form

KL/u ≈ 0.6Sc−1/2
(
ν〈β2〉1/2/u2

)1/2
. (10)

The prefactor α = 0.6 is in good agreement with that obtained by McCready et al.
(α = 0.7) who solved numerically the concentration equation forced by an experimental
velocity signal. The slight difference between the two values may have a number of
causes, since McCready et al. made several important simplifying assumptions (two-
dimensional flow, Eβ (ω) taken from a near-wall signal, spanwise variation of the
velocity fluctuations represented by a single harmonic with a wavelength equal to
that of near-wall streaks, . . . ). On the other hand, our LES procedure may slightly
underestimate the mass transfer rate since the horizontal small-scale motions are not
directly computed, and this may result in a somewhat lower value of α.

Let us finally examine the consequences of (10) in terms of the dependence of
the mass transfer rate with respect to the Reynolds number. Comparing (9a) with
the definition of the Batchelor microscale δB = LRe−3/4Sc−1/2 and making use of the
estimate ε ∼ u3/L yields immediately 〈β2〉 ∼ ε/ν. This allows us to re-express (10) in
the form

KL/u = αSc−1/2Re−1/4, (11)

where α is an O(1) constant. According to our LES results, the value of α required
to recover (10) quantitatively is 0.31, which is close to the ‘optimal’ value α = 0.25
suggested by Theofanous et al. (1976). Equation (11) makes it clear that the surface
divergence model (10) of McCready et al. (1986) predicts the same dependence of
the mass transfer rate vs. the turbulent Reynolds number as the ‘small-scale eddy’
model of Banerjee et al. (1968) and Lamont & Scott (1970). However, this point
must not be misunderstood. In § 4, we showed that the structures that drive the
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near-surface concentration field are the large-scale updraughts and downdraughts. In
this sense it is clear that the mass transfer rate is controlled by the large-scale events,
as shown experimentally by Komori et al. (1989). However, the vertical movements
of these structures strongly mix the upper layers of the flow and what we observed
in § 3.2 is that the efficiency of this mixing process reduces the thickness of the
diffusive sublayer to about one Batchelor microscale. This is the reason why the
exponent −1/4 occurs in (11) and it must be kept in mind that this exponent does
not imply that the transfer is controlled by the small-scale eddies. Note that the
Re-dependence indicated by (11) is weak, so that it may be altered by a number
of factors, among which are the turbulence anisotropy below the surface-influenced
region and the deformation of the free surface. This is why the best support to the
above Re-exponent is generally provided by grid-stirred experiments where the above
alterations are small. For instance, the aforementioned experiments of McKenna &
McGillis (2004) corresponding to a clean interface display an average Re-exponent
of −0.26 in the range 280 <Re < 900. In contrast, turbulence anisotropy and surface
deformation (in low-depth experiments) prevent most of the open-channel data from
displaying a clear variation of KL/u vs. Re. For instance, the results of Komori
et al. (1989) are found to be almost Re-independent when plotted in dimensionless
form. Similarly, a direct comparison between the mass transfer rate predicted by
the DNS of Handler et al. (1999) (Re = 95, Sc =2) and (8) yields a Re-exponent of
about −0.13, i.e. half that predicted by (11). However, in this DNS the r.m.s. vertical
velocity at y = L (say v) is such that v/u ≈ 0.75 whereas v/u ≈ 0.9 in our LES. If we
crudely assume that 〈β2〉(L/u)2 is proportional to (v/u)2 (an assumption consistent
with the Hunt–Graham (1978) theory discussed below), the Re-exponent becomes
−0.20, which is much closer to the prediction in (11). A detailed investigation of the
influence of the turbulence anisotropy on the relationship between the mass transfer
rate and the turbulent Reynolds number is beyond the scope of the present work,
but the above estimate clearly suggests that this parameter has a strong influence
and must be taken into account for generalizing (11) to flows where the turbulence is
significantly anisotropic. Finally, it is worth noting that (11) (through the estimate
〈β2〉 ∼ ε/ν), relies on the assumption of a well-developed inertial subrange in the
turbulence spectrum E(k). If Re is too low for such a subrange to exist, E(k) exhibits
a larger negative slope and straightforward calculations of 〈β2〉 assuming E(k) ∝ k−m

with m > 5/3 indicate that the larger m, the larger the negative exponent of the
Reynolds number in (11). This confirms the conclusion of Theofanous et al. (1976)
that the Re−1/4 scaling is characteristic of high Reynolds numbers, whereas mass
transfer rates determined in low-Re experiments exhibit a larger variation with the
Reynolds number.

5.3. The connection between the r.m.s. surface divergence and the underlying turbulence

The last question to which our computations may contribute is that of the relationship
between the value of the r.m.s. surface divergence and the bulk turbulence. This
question may be summarized in the form: given the values of the large-scale properties
u and L of the turbulence below the surface-influenced region (still assuming that
this turbulence is isotropic), what is the value of 〈β2〉? A general answer to this
question is desirable since it would open the possibility of estimating directly the
mass transfer rate through (10), without a need to investigate the detailed structure of
the Kolmogorov sublayer. Some attempts to address this question have already been
made (Brumley & Jirka 1988; Banerjee 1990; Banerjee et al. 2004), but we think a
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re-examination in the light of recent theoretical analyses and of present LES results
may clarify the problem.

As we saw above, 〈β2〉 scales as ε/ν for high enough Re. This is consistent
with the usual estimate of the variance of velocity gradients in homogeneous
isotropic turbulence, where 〈(∂v′/∂y)2〉 =1/15(ε/ν) (Batchelor 1953, p. 47). However,
the prefactor 1/15 cannot subsist in the near-surface region, since the turbulence
structure is modified by two different phenomena. The first of these, whose effects
extend approximately over one integral scale below the surface, is the blocking
process that forces the vertical velocity to vanish at the surface. The consequences
of this purely kinematic process on the statistical structure of the turbulence were
described by Hunt & Graham (1978). They were revisited by Magnaudet (2003) who
examined in particular the variance of velocity gradients thoughout the so-called
‘source layer’ extending approximately from y = L to the edge of the viscous sublayer
y = 2.0Re−1/2L. His analysis shows that even though the r.m.s. vertical velocity
fluctuation falls from its free-stream value at y = L to tiny values at y = 2.0Re−1/2L,
the r.m.s. of the vertical gradient ∂v′/∂y does not change significantly because only
eddies larger than the Taylor microscale are blocked by the surface in this region. In
contrast, within the Kolmogorov sublayer, the blocking effect affects all wavenumbers
and tends to greatly increase ∂v′/∂y. The variance of the velocity gradients at the
surface can easily be evaluated from the Hunt–Graham theory. In particular, we find
〈(∂v′/∂y)2〉|y=0 = 1/3(ε/ν), a result suggesting that 〈(∂v′/∂y)2〉 increases by a factor
of five from y = 2.0Re−1/2L to y = 0 (Brumley & Jirka 1988) (note that in the above
estimate, ε denotes the dissipation rate in the bulk). Mass transfer models based on this
‘inviscid’ estimate of the surface divergence have been proposed by Banerjee (1990)
and Banerjee et al. (2004). However, these models overlook the second near-surface
process, namely the viscous damping of the horizontal components of the vorticity
within the viscous sublayer. Viscous corrections to the Hunt–Graham model were
derived by Teixeira & Belcher (2000) in the time-dependent situation corresponding
to the development of a shear-free boundary layer created by the sudden insertion of
a surface onto an initially homogeneous isotropic turbulence. These authors showed
that viscous effects affect primarily eddies whose size k−1 is comparable to or smaller
than the thickness δV (t) of the viscous sublayer. Unfortunately, the quantitative
validity of their corrections is limited to the very early stages of the motion during
which δV (t) is still smaller than the Kolmogorov length scale δK . Nevertheless their
theoretical expressions make it clear that, while the r.m.s. horizontal velocities which
are mainly determined by the large scales are only weakly affected by viscous effects
(the relative magnitude of the corresponding correction is O(Re−1/2)), all non-zero
velocity gradients experience an O(1) reduction when δV (t) ∼ δK . More precisely, their
figure 6(d) indicates that 〈β2〉 is reduced by a factor of two approximately, compared
to the inviscid prediction. There appears to be no reason to suspect that the nonlinear
effects which are negligible during this very early stage of the flow may remove or
even reduce this viscous effect, since the nonlinear processes usually mostly stop the
growth of the flow characteristics at the value they had at the end of the linear stage.
Moreover, the same reduction by a factor of two is observed at later stages of the
flow in the DNS of Perot & Moin (1995) and Walker, Leighton & Garza-Rios (1996).

To detect the consequences of the processes discussed above in our LES results,
we first require the value of the dissipation rate ε in the source layer (as shown by
Magnaudet (2003), this value is almost identical to the bulk value). Figure 5(a) of
CM indicates ε ≈ 1.87 × 10−3u4/ν, from which according to the ‘inviscid’ predictions
discussed above, 〈(∂v′/∂y)2〉1/2 should vary from 1.1 × 10−2u2/ν (corresponding to
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the homogeneous isotropic estimate) at the outer edge of the viscous sublayer to
2.5 × 10−2u2/ν at the surface (corresponding to the ‘inviscid’ surface prediction). As
we previously found 〈β2〉1/2 = 1.5 × 10−2u2/ν, we see that the value of the r.m.s. surface
divergence provided by the LES is well in the range of these theoretical predictions.
However, it lies significantly below the ‘inviscid’ surface value, which is not unlikely
given the above discussion. According to the numerical value of 〈β2〉, we infer that
viscous effects reduce 〈(∂v′/∂y)2〉 by a factor of 2 to 3, i.e. the actual value of 〈β2〉
lies approximately in the range [ε/9ν, ε/6ν]. While this estimate is provisional at
the present stage and probably depends somewhat on the Reynolds number, it is
qualitatively in line with the results of Teixeira & Belcher (2000). Consequently, our
results confirm that the inviscid blocking effect and the viscous near-surface reduction
of the velocity gradients have to be considered together if we are seeking reliable
quantitative estimates of 〈β2〉 capable of predicting directly the mass transfer rate
through (10).

6. Summary and concluding remarks
The results discussed in this paper provide a detailed view of the mechanisms

governing the mass transfer process through a flat shear-free surface bounding a
turbulent flow where the bulk turbulence is approximately isotropic. The numerical
data were obtained for a wide range of Schmidt number (1 to 200), and for a single
turbulent Reynolds number of 360. These results first established the dependence of
several statistical quantities vs. the Schmidt number. In line with theoretical arguments,
the thickness of the inner diffusive sublayer and the mass transfer rate were found to
be proportional to Sc−1/2. Similarly, when plotted against the dimensionless distance
Sc1/2yu/ν, the near-surface profiles of the normalized concentration variance and of
all terms contributing to its budget were shown to be independent of the Schmidt
number. The simultaneous analysis of the near-surface concentration and velocity
fluctuations emphasized the role of the large-scale updraughts and downdraughts. In
particular, it revealed the one-to-one correspondence between the vertical motions
that penetrate the inner diffusive layer and the near-surface concentration fluctuations,
each mirroring the other. The co-spectra of c′′ and v′′ also provided an unambiguous
indication that the mass transfer process is driven by motions whose spatial extension
in the horizontal directions is about 2L, i.e. large-scale motions. A third series of results
concerned the role of the turbulent Reynolds number. Whereas our computations were
carried out for a single Reynolds number, comparison of the thickness of the various
dynamic and concentration sublayers, combined with available low-Re DNS data,
allowed us to establish the Re-variation of the inner and outer diffusive sublayers.
It turned out that the thickness of the inner diffusive sublayer throughout which the
mean concentration profile is linear, is about 2.0Sc−1/2Re−3/4, i.e. it corresponds to the
Batchelor microscale. In contrast, the thickness of the outer diffusive layer throughout
which the r.m.s. fluctuation grows from zero at the surface to a maximum at the outer
edge is about 2.0Sc−1/2Re−1/2. By a frequency analysis of the concentration equation,
we showed that the Re−3/4 scaling of the inner diffusive sublayer results directly in
the 〈β2〉1/4 scaling of the mass transfer velocity KL, which in turns implies that KL is
proportional to Re−1/4. As pointed out in § 5, while this Re−1/4 scaling is identical to
that predicted by the ‘small-eddy’ model, it just results from the Re-variation of the
thickness of the inner diffusive sublayer and implies by no means that the transfer is
governed by small-scale eddies (equivalently, we may say that the only ‘small scale’
relevant in the mass transfer process is the thickness of the inner diffusive sublayer).
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Finally, our investigation, combined with available DNS and theoretical results, was
found to provide some indication of the influence of turbulence anisotropy and
near-surface viscous effects on the mass transfer rate.

Obviously, present results have a fairly limited range of direct applicability since
they were obtained for a flat shear-free surface, whereas in practice most gas–liquid
interfaces are (at least intermittently) subject to shear and deformation, or even to
wave breaking. If air is blowing above the surface and induces an interfacial shear
stress ρu2

I in the liquid (ρ being the liquid density), our results are, in principle, valid
only if ui/u � 1. Similarly, if uw denotes the interfacial r.m.s. velocity fluctuation
induced by the vertical displacements of the surface, the assumption of a flat surface
only holds in the limit uw/u � 1. Situations in which u exceeds ui and uw correspond,
for instance, to low-wind stages where the main instantaneous source of mixing comes
from the turbulence in the upper layer of water rather than from the surface itself,
whatever the precise origin of this turbulence. Clearly, a general model of mass transfer
must also encompass situations in which the driving mechanism of the transfer is
provided by the interfacial shear (ui � Max(u, uw)) or the waves that propagate at
the surface (uw � Max(u, ui)), as well as more complicated situations in which several
of these mechanisms act simultaneously. In the case where ui � Max(u, uw), the near-
surface turbulent field ressembles that near a solid wall, including the presence of
longitudinal streaks (Lam & Banerjee 1992), except that horizontal fluctuations do
not return to zero at the surface. The mass transfer process through a flat sheared
interface was investigated numerically by Calmet & Magnaudet (1998) and Lakehal
et al. (2003). In this situation, the relevant velocity and length scales of the surface
boundary layer are ui and ν/ui , respectively. Therefore, when scaled properly with the
above inner variables, the mass transfer rate does not depend on any outer turbulent
Reynolds number, which contrasts with the Re−1/4 dependence typical of the shear-
free case. Hence, similarly to the case of a wall-bounded shear flow, the prediction
of the mass transfer rate in the limit ui � Max(u, uw) turns out to be simpler than
that through a shear-free surface because the turbulence is generated directly in the
region of interest.

The question of how surface deformation and surface waves affect the mass transfer
process is much more complicated. In particular, the problem is obscured in most
experiments by the intrinsic coupling between wave generation and interfacial shear.
However, recent experiments in which standing capillary waves were generated by
a Faraday instability at the surface of an otherwise quiescent liquid demonstrated
unambiguously that such waves may tremendously increase the mass transfer rate
(Saylor & Handler 1999). What remains unclear is the mechanism responsible for
this enhancement. Among others, plausible candidates are random surface drift due
to wave modulation (e.g. Ramshankar & Gollub 1991), flow separation induced by
vorticity generation on a strongly curved free surface (Longuet-Higgins 1992), or
advection-enhanced diffusion due to the alternatively converging/diverging stream-
lines below the waves (Szeri 1997). Future computational studies may substantially
help to explore the impact of the above mechanisms. For instance, using the
curvilinear version of our code (e.g. Merle, Legendre & Magnaudet 2005), the present
LES approach can be extended to the case where the surface is populated with
periodic capillary waves with arbitrary amplitude and frequency. The advantage
of such an approach is that the ratio uw/u and the wave characteristics can be
varied arbitrarily, making it possible to disentangle the respective role of several
possible mechanisms and to explore a significant range of parameters in order to
derive scaling laws for the mass transfer rate. We believe that such approaches
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combined with laboratory experiments may significantly contribute to improving the
understanding and the prediction of mass transfer in real geophysical and industrial
systems.
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